Recent News
Address

Discover Optimax

We are a world leader in high precision optical manufacturing, delivering custom optics to a wide range of innovators around the globe. Meeting these goals demands the right people. Teamwork, adaptability, and an enthusiastic approach to problem-solving are central to the Optimax culture. But what unites all our employees best is a hunger to continuously learn. We strive to find driven individuals who are committed to lifelong learning; who will continue to add value in their work throughout long and successful careers.

Careers
PRODUCTS & CAPABILITIES

Optical Domes

Optical systems integrators and engineers choose Optimax for our best quality optics and best quality service. We routinely deliver high-precision optical domes and parallel optical surfaces to valued partners in a broad spectrum of high technology markets, regularly rising to the challenge of delivering custom optical solutions for extremely challenging manufacturing requirements. With one of the largest optics engineering teams and an advanced R&D department, we bring unprecedented expertise to any optical dome project.

Domes

REQUEST A QUOTE

Our quotes are structured to offer standard pricing and delivery – quicker delivery options are available upon request.

START HERE

LEARN FROM THE EXPERTS

Discover how Optimax is changing the future of optics, and view our extensive library of resources.

START HERE

JOIN OUR TEAM

We are looking for individuals that are committed to lifelong learning and creating value through their hard work.

START HERE

What are Optical Domes?

An optical dome is composed of two parallel optical surfaces. Optical domes are unique because, unlike any other optical components, the key attribute of the dome is to have no optical effect. Mirrors reflect light, lenses bend light, and domes ideally change nothing.

Typically the lead element in an optical system, a dome is often exposed to the environment and protects electronic sensors. Accordingly, domes made from hard ceramic materials are preferred due to their ability to withstand wind and rain erosion. Domes are typically found in single-use defense applications and submersible vehicles for deep ocean exploration.

Specifying Parallel Optical Surfaces

Specifying an optical dome demands definitions for the material, one radius, center thickness, and wall thickness variation – sometimes abbreviated to WTV. Other qualities tend to follow the specifications of standard spherical lenses.

The materials used to fabricate parallel optical surfaces are determined by application; primarily the operating conditions and the required transmission. Thus, optical domes are sometimes classified by wavelength (i.e. infrared optical domes), and other times by their composition (i.e. zinc selenide domes). At Optimax, we fabricate optical domes suitable for applications spanning a broad spectral range, from UV through to IR applications. We also routinely grind and polish premium optical materials like aluminum oxynitride, cerium alumina, magnesium aluminate, and zinc selenide.

ORDER NOW

The material, one radius, center thickness, and wall thickness variation (WTV)

Domes

Image above: Description of a Dome, WTV related to radius error, grossly exaggerated for illustrative purposes.

Manufacturing Optical Domes

Optical domes are hemispheric systems composed of two parallel optical surfaces. With no discernible optical effects, domes present a clear field of view between two environments, hence they are often used as the lead element in precision optical assemblies. Optimax manufactures optical domes to tight tolerances using deterministic CNC machining, providing reliable results for most optical materials, including glass, fused silica, ALON™, CeraLumina™, Spinel, and ZnS.

Unlike mirrors and lenses, optical domes do not alter the light passing through them, which is ideal for critical applications such as single-use defense and navigation systems for submersible vehicles.

FIND THE OPTIC SPECIFICATIONS RIGHT FOR YOUR NEEDS:

Manufacturing Tolerance Chart
KNOWLEDGE CENTER
Coating Uniformity
OPTICS

Application Solutions

Learn how Optimax Manufactures the Future in your market.
LEARN MORE
OPTICS

Engineered Solutions

Learn how Optimax is leading the way in optical innovation.
LEARN MORE

Technical Expertise

Do you want to learn more about our optical manufacturing innovation? Refer to our Knowledge Center to read technical papers on, aspheres, business leadership, coatings, freeform optics, innovative optics manufacturing, and lens tolerancing & inspection.

Innovative Optics Manufacturing

Laser Mirror Design Tradeoffs Impact Optical System Performance

In addition to tradeoffs between mirror reflectivity, wavefront, laser-damage threshold, and cost, new low-stress coatings offer weight, geometry, and thermomechanical performance and design flexibility.  

Innovative Optics Manufacturing

Leveraging 3D Printing to Streamline Precision Optical Manufacturing

Optimax uses a variety of 3D printers to streamline our manufacturing processes. Download our technical paper today to learn about our results. 

Innovative Optics Manufacturing

Design and Manufacturing Considerations for Freeform Optical Surfaces

Freeform optical systems are becoming increasingly common due to new design and manufacturing methods. We present an example compact freeform optical system and describe considerations for transfer of the prescription …

Innovative Optics Manufacturing

The Manufacturing of a Multi-surface Monolithic Telescope with Freeform Surfaces

Monolithic multi-surface telescopes combined with freeform optical surfaces provide improvements in optical performance in a smaller footprint as compared to systems with spherical surfaces, while providing superior mechanical stability to …

Innovative Optics Manufacturing

Scaling-up freeform manufacturing: challenges and solutions

This paper will present some of the challenges and solutions of extending freeform polishing capabilities from approximately 150 mm diameter parts to a component of over 500 mm in diameter.

Innovative Optics Manufacturing

Techniques for Analyzing Lens Manufacturing Data

Optical designers assume a mathematically derived statistical distribution of the relevant design parameters. However, there may be significant differences between the assumed distributions and the likely outcomes from manufacturing. 

Innovative Optics Manufacturing

Cost Effective Fabrication Method for Large Sapphire Sensor Windows

Sapphire poses very difficult challenges to optical manufacturers due to its high hardness and anisotropic properties. These challenges can result in long lead times and high prices. Optimax is developing …

Innovative Optics Manufacturing

Reduced cost and Improved Figure of Sapphire Optical Components

Optimax has developed a fabrication process that not only reduces cost but also aids in producing spherical sapphire components to better figure quality. 

Innovative Optics Manufacturing

Centration Errors: That's great, but…..

The optical axis of a spherical lens is the axis passing through the two centers of curvature of the optical surfaces. It is such a simple thing to describe. However, …

Innovative Optics Manufacturing

Optical Systems: Transmissive high-energy laser optics

There are many decisions to make when designing, specifying, manufacturing, and testing optical components for high-energy laser systems — each is a potential failure mechanism that must be understood and …

Innovative Optics Manufacturing

The Cost of Tolerancing

The cost of lenses is strongly dependent on the difference between the specified tolerances and the limits of the optics manufacturer, the coater, and the metrologist. 

Innovative Optics Manufacturing

Specification and Control of Mid-Spatial Frequency Wavefront Errors in Optical Systems

This paper is an introduction to the specification and tolerancing of Mid-spatial frequency (MSF) ripple or waviness.

Innovative Optics Manufacturing

Vibe: A New Process for High Speed Polishing of Optical Elements

The concept for polishing optical elements with a process called VIBE is presented, application to non uniformly sloped optics such as aspheric shapes is detailed, and initial results on spherical …

Innovative Optics Manufacturing

Considerations in Manufacturing Cemented Assemblies

One design strategy for an optical system is centering two or more lenses together to build a lens assembly. However, strain in excess may cause delamination or fracture of the …

Innovative Optics Manufacturing

Specifying And Measuring Spherical Surface Irregularity ©

This paper will define surface irregularity for spherical surfaces, offer information on measurement methods for testing surface irregularities, and some specification guidelines.

Innovative Optics Manufacturing

Tolerancing, Specifying and Measuring Spherical Radius

There are two main paths for tolerancing spherical radii: power tolerance and linear radius tolerance. Both measure change relative to a nominal value, but the metrology used is the key …

Innovative Optics Manufacturing

Design and Manufacturing Considerations for Freeform Optical Surfaces

Freeform optical systems are becoming increasingly common due to new design and manufacturing methods. We present an example compact freeform optical system and describe considerations for transfer of the prescription …

Manufacturing the Future

At Optimax, we are manufacturing the future, creating the highest precision optics underlying high-tech systems in key markets and applications. We offer rapid and expedited delivery upon request and are committed to our customers in the long term.

Submit an RFQ to start building your relationship with one of the world’s foremost manufacturers of custom optics.

READY TO TAKE THE NEXT STEPS

View the Optimax Buying Process

I am text block. Click edit button to change this text. Lorem ipsum dolor sit amet, consectetur adipiscing elit.
Ut elit tellus, luctus nec ullamcorper mattis, pulvinar dapibus leo.

Asphere Optics
Technical Papers
Request a Quote

Accessibility Toolbar